Adaptive Voting in Multiple Classifier Systems for Word Level Language Identification
نویسندگان
چکیده
In social media communication, code switching has become quite a common phenomenon especially for multilingual speakers. Automatic language identification becomes both a necessary and challenging task in such an environment. In this work, we describe a CRF based system with voting approach for code-mixed query word labeling at word-level as part of our participation in the shared task on Mixed Script Information Retrieval at Forum for Information Retrieval Evaluation (FIRE) in 2015. Our method uses character n-gram, simple lexical features and special character features, and therefore, can easily be replicated across languages. The performance of the system was evaluated against the test sets provided by the FIRE 2015 shared task on mixed script information retrieval. Experimental results show encouraging performance across the language pairs. CCS Concepts •Computer systems organization → Embedded systems; Redundancy; Robotics; •Networks → Network reliability;
منابع مشابه
Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملOff-line Handwritten Word Recognition Using Ensemble of Classifier Selection and Features Fusion
Handwritten recognition is a very active research domain that led to several works in the literature for the Latin Writing. The current systems tendency is oriented toward the classifiers combination and the integration of multiple information sources. In this paper, we describe two approaches for Arabic handwritten recognition using optimized Multiple classifier system MCS . The first rests on...
متن کامل